视频教程:高一入口 高二入口 高三入口
首页
数学学习方法 您现在的位置: 学习方法网 >> 学习方法 >> 数学学习方法 >> 正文
   
 
高三数学复习:求数列通项公式的常用方法
 
作者:佚名 来源:不详 点击数: 时间:2008-11-14 17:07:38【字体:
 
《名师视频讲解高中课程》远题海,近方法,每周仅需一小时!高一请进  高二请进  高三请进
 

  在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的检验,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键。

  求数列通项公式常用以下几种方法:

  一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。

  例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。

  解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。

  二、已知数列的前n项和,用公式

  S1 (n=1)

  Sn-Sn-1 (n2)

  例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5

  (A) 9 (B) 8 (C) 7 (D) 6

  解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)

  此类题在解时要注意考虑n=1的情况。

  三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。

  例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。

  解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,

  再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,

  - (n=1)

  - (n2)

  四、用累加、累积的方法求通项公式

  对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。

  例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式

  解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0

  又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,

  又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)

  五、用构造数列方法求通项公式

  题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。

  例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……

  (1)求{an}通项公式 (2)略

  解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)

  ∴{an--}是首项为a1--,公比为--1的等比数列。

  由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-

  又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。

  证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数)

  由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,

  所以数列{an-n}是首项为1,公比为4的等比数列。

  若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。

  又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略

  解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1

  解题方略

 

中学视频辅导课程推荐
课程名称 主讲老师 详情
初一课程 初一全科强化班! 何老师等 查看详情>>
初二课程 初二全科强化班! 李爱民等 查看详情>>
初三课程 初三全科强化班! 周业虹等 查看详情>>
高一课程 高一重难点突破班 林斌等 查看详情>>
高中全科巨无霸套餐 孟卫东等 查看详情>>
高二课程 高二全科强化班! 各科名师 查看详情>>
高中全科巨无霸套餐 林祖荣等 查看详情>>
高三课程 高考一轮学期班! 郑克强等 查看详情>>
高三全科强化班! 王大绩等 查看详情>>
更多课程+更多介绍>>点击进入

  
  • 上一篇文章:

  • 下一篇文章:
  •  
     
     重点推荐

    高中名师辅导课程(注册即可)

    高一辅导课程
    普通文章[高一]2013-2014年度高一上学期学期班
    普通文章[高一]2013-2014年度高一全科强化班
    高二辅导课程
    普通文章[高二]2013-2014年度高二上学期学期班
    普通文章[高二]2013-2014高二全科强化班
    高三辅导课程
    普通文章[高三]2013-2014年度高考一轮学期班
    普通文章[高三]2013-2014高三全科强化班

    初中名师辅导课程(注册即可)

    初一辅导课程
    普通文章[初一]2013-2014年度初一上学期学期班
    普通文章[初一]2013-2014初一全科强化班
    初二辅导课程
    普通文章[初二]2013-2014年度初二上学期学期班
    普通文章[初二]2013-2014初二全科强化班
    初三辅导课程
    普通文章[初三]2013-2014年度初三上学期全科强化…
    普通文章[初三]2013-2014年度初三全科强化班
     栏目导航
     学习方法排行榜
    普通文章2013高考备战:高三学生寒假学习
    普通文章2013高考一轮复习指导概说
    普通文章2011年高考物理复习计划
    推荐文章2011年高考化学复习计划
    普通文章2011年高考英语复习计划
    推荐文章2011高考数学复习宝典:是知识整
    推荐文章推荐下载:2011高考复习计划、复
    普通文章2011高三初体验:46个常见问题名
    推荐文章科学备考:2011届新高三全年复习
    普通文章2011届高考理综全年复习计划(最
    | 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 管理登录 | 网站合作 | 广告投放 |
    Copyright © 2004-2010 学习方法网 Inc. All Rights Reserved.